
AFRL-IF-RS-TR-2001-91 
Final Technical Report 
May 2001 

FUSION OF STOCHASTIC AND LINGUISTIC 
INFORMATION USING A CONDITIONAL EVENT 
FRAMEWORK 

University of Massachusetts 

Patrick A. Kelly, Haluk Derin and Wei-Bo Gong 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

20010713 045 
AIR FORCE RESEARCH LABORATORY 

INFORMATION DIRECTORATE 
ROME RESEARCH SITE 

ROME, NEW YORK 



This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS). At NTIS it will be releasable to the general public, 
including foreign nations. 

AFRL-IF-RS-TR-2001-91 has been reviewed and is approved for publication. 

APPROVED: MARKG.ALFORD 
Project Engineer 

FOR THE DIRECTOR: JOSEPH CAMERA, Chief 
Information & Intelligence Exploitation Division 
Information Directorate 

If your address has changed or if you wish to be removed from the Air Force Research 
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by 
your organization, please notify AFRL/IFEA, 32 Brooks Road, Rome, NY 13441-4114. 
This will assist us in maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE OMB No. 0704-0188 

Puhlic reporting burden (or this »faction o of informotion is estimated to mriga 1 hour par response, including tin tine lor renewing instructions, searching existing date sources, gathering and malntaininu the data needed, and completing end rerewing 
the collection öl information. Send comments regarding this burden estimate or en» other aspect of this collection of information, including suggestions for reducing this burden, to Washington Heodquirtcrs Semen Dractorate for Information 
Operations and Reports, 1216 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management end Budget. Paperwork Reduction Project 10704-01 SB). Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank! 2. REPORT DATE 

 May 01 

3. REPORT TYPE AND DATES COVERED 

Final Sep98-Jun00 
4. TITLE AND SUBTITLE 

FUSION OF STOCHASTIC AND LINGUISTIC INFORMATION USING A 
CONDITIONAL EVENT FRAMEWORK 

6. AUTHOR(S) 

Patrick A. Kelly, Haluk Derin and Wei-Bo Gong 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) 

University of Massachusetts 
College of Engineering 
Box 35110 
Amherst, MA 01003-5110 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AFRL/IFEA 
32 Brooks Road 
Rome, NY 13441-4114 

5. FUNDING «UMBERS 

C    - F30602-98-C-0263 
PE   -62702F 
PR   -4600 
TA   -II 
WU -D2 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-IF-RS-TR-2001-91 

11. SUPPLEMENTARY NOTES 

AFRL Project Engineer: Mark A. Alford, IFEA, 315-330-3802 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This report addresses a framework for merging different types and sources of information for applications involving image 
estimation. Complex decision-making systems rely on feature estimates derived from image data. It is imperative that all 
available information be used to effectively generate high quality estimates. This information includes stochastic raw sensor 
data, conditional information obtained from other sources and linguistic information such as if-then rules obtained from 
human experts who supervise the processing. 

14. SUBJECT TERMS 

conditional event algebra, random sets, bayesian networks, image processing, linguistic 
processing 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

28 
16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 23S.18 
Designed using Perform Pro. WHSIDIOR. Oct M 



TABLE OF CONTENTS 

I. EXECUTIVE SUMMARY 1 

II. OBJECTIVE AND SCOPE OF WORK 3 

III. PROJECT TASK SUMMARIES 4 
1. Development of a conditional event framework for fusion 

of stochastic and linguistic information 
2. Development of algorithms for iterated image estimation 

and image model updating 
3. Development of algorithms for knowledge-aided model 

identification and optimization 

5 

10 

14 
IV. CONCLUSIONS 

V. REFERENCES 15 



LIST OF FIGURES 

Figure 1 Edge Detection 7 

7 

7 

Figure 2 Boundary Localization 

Figure 3 Active Contour Matching 

Figure 4 (a) Network for multi-target scene; (b) Probability propagation 9 

Figure 5 (a) True targets; (b) Observed image. 10 

Figure 6 Targets estimated by network 

Figure 7 Adaptive system model 

10 

13 

Figure 8 Adaptive algorithm applied to restoration of text      14 
image 

li 



LIST OF ACRONYMS 

PS-CEA PRODUCT SPACE CONDITIONAL EVENT ALGEBRA 

RS RANDOM SET 

GUI GRAPHICAL USER INTERFACE 

LV LEFT VENTRICLE 

2DE TWO DIMENSIONAL ELECTROCARDIOGRAPHIC 

MAP MAXIMUM-A-POSTERIORI 

LMS LEAST MEAN SQUARE 

111 



I. EXECUTIVE SUMMARY | 

This is the final project report for Contract F30602-98-C-0263, titled "Fusion of 
Stochastic and Linguistic Information Using a Conditional Event Framework". The 
project addressed a fundamental and challenging problem in information fusion, namely, 
the development of a framework for merging different types and sources of information 
for applications involving image estimation. The complex decision-making systems 
characteristic of modern military, medical and industrial applications frequently rely on 
feature estimates derived from image data. In such demanding applications, it is 
imperative that all available information be used effectively to generate high-quality 
estimates. In typical systems, this information can include the stochastic raw sensor data, 
conditional information such as preliminary estimates obtained from other sources, and 
linguistic information such as if-then rules supplied by human experts who supervise the 
processing. Without a systematic and consistent framework for dealing with these 
diverse types of information, it is very difficult to design near-optimal fusion-based 
algorithms. 

In this project, our aim was to develop an information fusion framework by making use 
of recent advances in the theory of Product Space Conditional Event Algebras (PS- 
CEA's) and Random Sets (RS's) [1,2,3,4,10]. PS-CEA and RS techniques hold the 
promise of enabling stochastic, conditional and linguistic information to be represented in 
the common setting of a single probability space. In principle, this allows the 
computation of one joint distribution encompassing the diverse information sources, and 
thus allows standard statistical techniques such as Bayesian estimation algorithms to be 
generalized and applied to fusion-based tasks. As a proof-of-concept for this approach to 
information fusion, we considered its application to three concrete tasks: 

1. Iterated image estimation: Development of algorithms for estimate updating based on 
sequences of data from imaging sensors. 

2. Image model updating with uncertain observations: Development of algorithms that 
use uncertain information about a scene to update conditional models. 

3. Knowledge-aided model identification and optimization: Use of expert-supplied rules 
together with image data to identify and optimize processing systems. 

Results of our work on these tasks are described below, and in more detail in the 
published papers and thesis. Based on these results, we are able to state the following 
general conclusions: 

1.  The PS-CEA approach is helpful for representing some types of partial statistical 
knowledge.   For example, one common problem is that we know an observation 



distribution only when it is conditioned on the validity of some previous estimate. If 
we also have confidence values assigned to estimate outcomes, then the PS-CEA 
representation can be used to formulate algorithms for iterated estimation. These can 
have applications to, for example, scene estimation from a sequence of observed 
images. In general, however, the PS-CEA representation appears to be of somewhat 
limited use for the applications that we considered. One problem is that, while in 
principle one can write a joint distribution for any number of product space 
conditional events, in practice the computation of that distribution is very difficult 
when the number of conditional events exceeds two. Another problem is that the very 
common image estimation operation of conditioning on a continuous-valued 
observation (i.e., conditioning on an event whose probability equals or approaches 
zero) does not appear to be handled well by a PS-CEA representation. Hence, 
although PS-CEA can provide a conceptual framework for information fusion, for 
image estimation applications it seems that it is necessary to consider alternate 
representations for some types of information and computations. (See the discussion 
in Sections III.l and III.2 below.) 

2. One of the reasons for considering operations like iterated estimation for image 
processing is that nominally optimal Bayesian estimates are too computationally 
complex to implement directly. Similar difficulties are encountered in decoding 
problems in communication systems, and for some of those problems it has recently 
been found that effective and practical iterated computations can be organized via the 
framework of probability propagation in Bayesian networks [5]. In those networks, 
conditioning on observations is represented by impulse functions. We did a 
preliminary study of this approach for organizing the computations in image 
estimation, and believe that it is potentially useful for applications such as target 
detection and recognition. (See Section III.2.) 

3. For computations involving multiple conditional events such as if-then rules, the RS 
representation for rules proposed by Mahler [1,2,3,4] does lead to a practical and 
useful computational framework for fusion with data. We considered application of 
the framework to a problem of user-assisted image processor optimization, and 
believe that it can be generally applicable in problems involving expert-guided 
processing. (See Section III.3.) 

The rest of this report is organized as follows: For reference, the Objective, Scope, and 
Tasks/Technical Requirements of the project are first restated from the Contractor 
Statement of Work in Section II. Section III contains summary descriptions of the 
approaches, results and conclusions of the three main project tasks. Section IV contains 
concluding remarks, followed by the bibliography in Section V. This report resulted in 
several three conference papers that describe task outcomes in detail [6,7,8]. Other results 
include a Masters thesis developed from work on the knowledge-aided identification and 



optimization task [9] and software for a graphical user interface (GUI) implementation of 
the algorithm developed in the thesis. 

II. OBJECTIVE AND SCOPE OF WORK 

For reference, the Objective, Scope, and Tasks/Technical Requirements of the project are 
restated below from the Contractor Statement of Work. 

1.0 OBJECTIVE: 

1.1 The objective of the proposed effort is to investigate and develop algorithms and 
prototype software demonstrations establishing the feasibility and utility of conditional 
event algebra techniques for information fusion, with specific applications to (a) iterated 
image estimation; (b) image model updating with uncertain observations; and (c) 
knowledge-aided model identification and optimization. 

2.0 SCOPE: 

2.1 The scope of this effort is to investigate new approaches for information fusion and to 
demonstrate their usefulness in image data processing for decision-making systems. 

4.0 TASKS/TECHNICAL REQUIREMENTS: 

4.1 The contractor shall accomplish the following: 

4.1.1 Develop a conditional event framework for fusion of stochastic and linguistic 
information. 

4.1.2 Develop algorithms for iterated image estimation and image model updating, using 
the framework developed under 4.1.1. 

4.1.3 Develop algorithms for knowledge-aided model identification and optimization, 
using the framework developed under 4.1.1. 

4.1.4 Identify appropriate test systems for algorithms developed under 4.1.2 and 4.1.3. 

4.1.5 Test and validate the algorithms developed under 4.1.2 and 4.1.3. 

4.1.6 Provide a final report documenting all work accomplished under the project. 



4.1.7 Continually provide status reports as requested by the Program Manager of this 
effort. 

4.1.8 Conduct presentations/meetings at times and places specified in the Schedule. 

III. PROJECT TASK SUMMARIES 

1.  Development of a Conditional Event Framework for Fusion of Stochastic and 
Linguistic Information 

Under this task, we developed a Generalized Bayesian approach for information fusion 
that is based on the PS-CEA iterated conditioning formula described in [1,10]. The 
fundamental equation for the Generalized Bayesian approach is the following: 

,    lYl        P(X,A,BC) + P(B){P(X,A\Y,B) + P(AC\Y,B)P(X\A)} 
1    '    ' P(AKJB) 

In (1), X is the quantity to be estimated. The conditioning event A represents previously 
available information (e.g., operating rules or prior estimates). The conditional event 
(X\A) then represents the "prior" model (i.e., the model that encompasses the available 
information before the arrival of a new observation). The event (Y\B) represents the new 
observation, also possibly conditioned on some other event. The operation implemented 
by (1) is conditioning of the prior information on newly-arriving information to generate 
an updated (posterior) model used for estimation. The Generalized Bayesian approach 
results in recursive, iterated-conditioning estimators that (in a manner similar to Kaiman 
Filtering) use the posterior distribution at one stage to generate the conditioning event for 
the prior at the next stage. The key considerations in using the approach in specific 
applications are the definitions of the conditioning events and the computation of the 
component distributions on the right-hand side of (1). Throughout this project we 
examined estimators based on (1), or when the computations in (1) proved infeasible, on 
alternatives in the same spirit of iterated conditioning. 

As one potential application we considered the general problem of image sequence 
estimation, in which the information passed from one stage to the next is the current 
estimate of the image and/or its distribution, together with a measure of confidence in the 
estimate accuracy. When the next observed frame arrives, the problem is to fuse the new 
observation and the previous estimate to obtain an updated estimate for the current frame. 
Using (1), we derived a distribution update formula that could be used, for example, to 
generate improved scene estimates from sequentially-arriving observations. The update 
formula has the form: 



P((X(k+l)\(Xw\Cm))\ya+1)) 

= P(X(i+1) \Xik),y(M))P(C{k)) + P(XiM) |/4+I))(l-P(C(t)) 

where X{k+l) is the current scene, X{k) is the scene estimate from the previous frame, 
C(t)is an event under which the estimate X(k) is accurate, P(C(t>)is the confidence in 
that estimate, and ya+i) is the new (current) observation. (A similar formula can be 
derived when there is distribution information passed from the previous frame, instead of 
just an estimate value.) Equation (2) is a fusion formula, generating the updated posterior 
scene distribution given the current observation and the conditional (partial) information 
in the previous estimate (conditioned on its accuracy). As (2) shows, the updated 
distribution is actually a weighted combination of two posterior distributions: one given 
the observed data and that the previous estimate is accurate, and the second given the 
observed data alone. The development of the Generalized Bayesian approach, its 
possible applications in image estimate updating, and some tests on simulated image 
sequences are described in more detail in the conference paper [6]. 

2.  Development of Algorithms for Iterated Image Estimation and Image Model 
Updating 

Having derived a conceptual Generalized Bayesian approach and considered its possible 
application to image sequence estimation, we next examined how well it might actually 
apply to two concrete problems of iterated image estimation and image model updating. 
Problems of iterated image estimation arise whenever we have a time-sequence of 
observed images that is to be used in estimating a stationary or moving scene. In [3], we 
described how the Generalized Bayesian formula (1) could be applied to estimating a 
static scene from a sequence. In this task, we wanted to extend the approach to the 
estimation of a moving scene. The test application that we chose for this was locating the 
moving boundary of the left ventricle (LV) of the human heart in a sequence two- 
dimensional echocardiographic (2DE) images. Our chief reason for choosing this as a 
test case is that the ultrasound image quality in any given frame can be very poor, so that 
accurate estimation from current data alone is difficult. We need to fuse the data with 
other available information such as expert knowledge of LV shape or a prior good-quality 
estimate in order to generate sufficiently good estimates from the inevitable poor-quality 
frames. Also, the ability to accurately estimate and track the LV boundary would have 
practical significance in clinical applications (see, e.g., [11,12]), and data sequences are 
readily available for testing. In order to use the image estimate formula (2) that we 
derived from the Generalized Bayesian approach, we need to compute 
P(X(kH) | iw,y(*+1)); that is, we need to be able to find the distribution of the current 
scene, given the new observation and that the previous estimate is accurate. We 
formulated an approach to this based on deformable template models [13] and snakes 



[14]. In that approach, the previous estimate and the observation are weighted in an 
energy function that determines the conditional distribution for the current scene. If 
P(C{k)) = l, then by maximizing that conditional distribution we obtain the desired 
current-frame estimate. An example application of this approach is shown in Figures 1-3. 
From left to right, Figure 1 shows a typical image frame, the edges detected in that frame, 
and the edges superimposed on the observation. This illustrates some of the difficulties 
in processing 2DE images - because of poor image contrast and tissue variations in the 
scene, there are numerous missing and false edge pixels. Our objective is to find the best 
closed-boundary estimate for the LV (the dark region in the middle of the frame). Figure 
2 shows a prototype template (derived from a high-quality estimate from a previous 
frame) on the left and the results of a localization procedure that modifies this template 
and matches it to the observed image edges on the right. Finally, Figure 3 shows how the 
boundary estimate is refined using snake techniques, with the final closed boundary 
estimate shown superimposed on the observed frame on the right. This illustrates that 
even relatively inaccurate templates derived from temporally distant frames can provide 
significantly helpful information for overcoming a poor-quality observation to produce a 
good LV boundary estimate. 

The outcome shown in Fig. 3(b) is the result of maximizing P(X(*+1) | X(k), y(*+1)) with 
our model. This already performs information fusion, since it merges the prior 
knowledge of how the LV boundary is expected to move from frame to frame with the 
actual observed image. To fully use the formula (2) that follows from the Generalized 
Bayesian approach, we must define a confidence level in the accuracy of the previous- 
frame LV boundary estimate. When this is done properly, then the boundary matching 
procedure will be improved by properly weighting the contributions of the previous 
estimate and the data. That is, through the second term on the right-hand side of (2), the 
current estimate will be pulled away from a value determined solely by the first term 
(which is what is shown in Fig. 3) to a greater or lesser extent depending on the 
confidence. In our ongoing work on this task we are exploring how best to define and use 
confidence measures. The results of the work on this task will be described more fully in 
a paper to be submitted to the SPIE Conference on Medical Imaging in February, 2001. 



(a) Input frame (b) Edge map 

Figure 1 Edge Detection 

(c) Superimposed edges 

(a) Prototype template       (b) Edge map of input frame 

Figure 2 Boundary Localization 

(c) Localization 

(a) Placement of snake      (b) Estimate of LV boundary     (c) Superimposed result 

Figure 3 Active Contour Matching 



The second concrete application that we investigated under this task is image model 
updating for target detection and recognition. To perform effectively, these algorithms 
must use both prior knowledge and observations. In particular, there has been much 
recent research on defining or approximating maximum a posteriori (MAP) estimates for 
detection and recognition (e.g., [18,19]). These estimates are based on maximizing 
posterior distributions which are typically very complex. Feasible algorithms usually 
approximate this maximization through iterative computations of partial estimates (e.g., 
using annealing approaches which update part of the estimate given that the rest of the 
current estimate is accurate). It can be difficult to determine exactly what sequence of 
partial estimate computation will be most practical and effective. Also, while these 
algorithms generate estimates, for fusion with other information it would actually be 
more useful to have probabilities or confidence measures for a set of plausible 
alternatives. Our goal under this task was to investigate the possible application of the 
Generalized Bayesian approach to determine the best sequence of image model (i.e., 
distribution) updating for defining posterior target shape and label probabilities. 

We immediately faced a difficulty in trying to apply (1) directly to this problem, 
however, which is that we need to represent a conditional event in which conditioning is 
on a continuous-valued observation. (This is in contrast to the iterated estimation 
problem described above, where the conditional event has conditioning on C(k), a binary- 
valued event representing validity of the previous estimate.) Formula (1) weighs 
probability terms involving both the conditioning event and its complement. The 
problem is how to interpret the event that we observe some point value of a continuous- 
valued random field. In particular, if we say that the probability that the field takes any 
point value is zero, then the complement event has probability one and only the term 
involving the complement appears in the computation, which does not lead to a useful 
result. This is illustrative of what appears to be a limitation of PS-CEA - we were not 
able to find a satisfactory way to use PS-CEA to represent conditioning on continuous- 
valued observations. 

In searching for alternative frameworks for representing model updating from partial 
information, we noted that problems of finding effective, computationally feasible 
approximations to posterior distributions and MAP estimates also arise in communication 
system applications. In particular, there has been a great deal of recent interest in 
iterative soft-decision decoders (e.g., turbocoders [15]) that are based on updating of 
symbol probabilities. It has been noted that the types and sequence of computations 
involved in iterative soft-decision decoding can be organized via the framework of 
probability propagation in Bayesian networks [5,15]. In a Bayesian network, nodes 
representing variables are connected by directed links representing conditioning. For 
singly-connected networks (i.e., networks having only one path (when link directions are 
ignored) between any two nodes), there is an iterative algorithm for propagating updated 
probabilities forward and backward along the network that can be used to generate exact 



posterior probabilities at nodes. In multiply-connected networks, such as for turbocodes, 
application of the probability propagation algorithm does not produce exact posterior 
probabilities. However, as is noted in [5,15], the excellent decoding performance 
obtained by using probability propagation even for codes having multiply-connected 
networks suggests that it is an effective way for approximating MAP estimation. 

In this task, we represented the variables and conditioning relations in a target detection 
and recognition problem using a (multiply-connected) Bayesian network, and considered 
the computations that result from applying a probability propagation algorithm to that 
network. Figure 4 shows the network that we used and the order of propagation for 
updated probabilities. In the figure, p(S(k))represents a prior distribution incorporating 
shape characteristics of a target of type k; L is the label field (telling which target in the 
scene is of which type); and y is the observed image. The computation of updated target 
type and shape probability distributions based on this network is described in detail in the 
paper [7]. 

p(S<1>)    p(S<2>) p(S<M>) 

p(L|S<1> S<M>) P(y|S<1> SW.L) P(L|S(1> S'M>) b^ L hdi P(V|S(1) ,-,SM,L) 

© 
(a) 

(3)        (2) 

(b) 

t 8(Y-y) 

© 

Figure 4 (a) Network for multi-target scene; (b) Probability propagation. 

The test case considered in the paper used relatively simple target shape prior 
distributions and a very noisy observation. Even so, the algorithm was quite successful in 
estimating the target shapes, and it generated posterior target label probabilities that were 
very highly concentrated on the true labels. Figure 5 shows the true simulated targets on 
the left and the observed on the right. Figure 6 shows the recovered targets obtained by 
thresholding the posterior shape distributions for the most likely target labels found by 
the network. In our ongoing work, we are now looking at extending this approach to 
more informative and realistic target shape distributions, for example, edge-based models 
similar to those used in [18] or [19]. We are also investigating the use of this framework 



for fusing multiple observations by having a large network for data fusion encompassing 
subnetworks of the form of Fig. 4 for the individual observations. We believe that there 
are two significant potential benefits from using the probability propagation approach. 
First, it gives us a practical framework for organizing computations to approximate MAP 
estimation; and second, the algorithm actually generates distributions on nodes which, 
even if not the precise posterior distributions, still give us more information for further 
processing (such as fusion with other data) than is provided by just an estimate value. 

i 

(a) (b) 

Figure 5 (a) True targets; (b) Observed image. 

Figure 6 Targets estimated by network 

3.   Development of Algorithms for Knowledge-Aided Model Identification and 
Optimization 

10 



Modern decision-making systems for military, medical and industrial applications rely on 
information in image data. Often, the raw sensor data must be extensively processed in 
order to extract the most useful features. The exact form of the processing is determined 
by a set of parameters that are chosen to optimize some qualities of image features at the 
processor output. Image processors are often sufficiently complicated that it is difficult 
even for expert users to easily find the processing parameters that give the desired output 
for a given input image. (For example, see the discussion of the difficulties of manual 
processing selection for medical ultrasound systems in [11].) Furthermore, with the 
prevalence of image data in so many applications, image processors often must be applied 
by non-expert users who may have very little knowledge of how best to set the input 
parameters. One could avoid the difficulties of manual parameter selection is by having 
an automated system that makes use of image and processor models together with a 
quantitative output performance measure (e.g., mean-squared error for restoration or 
probability of error for segmentation) to set parameters optimally. However, this 
approach has some significant drawbacks. For one, it is difficult to specify an image 
model that is sufficiently accurate that processing designed to be optimal for the model is 
close to optimal for a real observation. This has led to some interest in adaptive 
processors that adjust models according to measured input and output characteristics 
[16,17]. Since image processing is computationally expensive and time-consuming, any 
realistic adaptive system would have to start with a good enough model that the necessary 
adjustments could be made with relatively few iterations. Perhaps even more problematic 
is the specification of an appropriate performance measure. It is well-known that 
convenient quantitative measures such as mean-squared error fail to capture many 
visually important qualities, and that optimization with respect to such measures may not 
give an output that is most useful to a human observer [17]. It has been noted that what is 
really needed in many applications is a system for qualitative optimization of output 
features [17]. 

In fact, there is often a great deal of qualitative and linguistic information about 
processors and their effectiveness that is available. This information can take the form of 
operating rules describing how expert users adjust input parameters to improve the output 
quality, and user assessments of the visual qualities of the processed image. The key 
question is how to incorporate this qualitative information in a numerical optimization 
scheme for input parameter selection. In this task, we investigated the use of the RS 
representation for rules and other linguistic information described in [1,2,4] for 
qualitative optimization of an image processor. The test system that we considered was 
2D isotropic Wiener filtering to restore noisy and blurred images. The reason for 
choosing this test case is that the input (filter) parameterization is relatively simple (only 
two parameters need to be specified), but how those parameters influence output visual 
quality is quite complex and non-obvious. We used three indicators of output quality: 
edge blur, edge ringing, and noisiness. For a given input image, we view the Wiener 
filter as a system that maps the input parameters to the output qualities. It is that system 
that we need to optimize. Since what is "optimal" will vary depending on the input and 
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the user's preferences, we cannot do this optimization with a fixed system model. 
Instead, we need an adaptive approach, recognizing that for practical considerations the 
adaptation can take only a few iterations, and that to match user preferences the 
adaptation needs to be driven by user-supplied quality assessments provided in some 
natural way. 

A block diagram of the approach we used for this is shown in Figure 7. We first noted 
that it is difficult even for experts to state rules that directly relate filter input parameters 
to output image feature quality. However, it is relatively easy to state how changes in 
output features are generally related to changes in filter properties such as peak 
frequency, energy and maximum frequency-response slope. These filter properties are in 
turn related to filter input parameters through fixed numerical relations. So, in Fig. 7, 
System 1 is a fixed, nonlinear mapping from filter input parameters to filter properties. 
System 2 is an adaptive, user-determined linear mapping from changes in filter properties 
to changes in output image features. To have a good starting point, we used an initial 
System 2 model found from maximum-likelihood estimation applied to a distribution 
determined by random sets corresponding to seven expert-supplied operating rules. (For 
example, one of the rules was: "If filter energy is decreased and maximum frequency- 
response slope is decreased, then edge ringing will decrease and noisiness will 
decrease.") This nominal model is modified during processor operation to account for 
different input images and user preferences. When an input image is presented to the 
processor, the current system model is used to select the filter parameters. The resulting 
Wiener filter is applied, and the user assesses the output quality by indicating how each 
output feature needs to be improved (e.g., "less blur"). This linguistic information is 
converted to numerical values which are used to drive a least mean-square (LMS) 
adaptive filtering algorithm. This algorithm adjusts the System 2 model and uses the 
inverse of the adjusted model to find the desired changes in filter properties. These are 
added to the current filter property state to find the updated filter properties. Finally, the 
inverse of the System 1 model is applied to the new filter property state to select updated 
(and better) input parameters. The procedure continues until the user is satisfied with the 
output quality. 

In tests on many different images, this approach has achieved a large degree of 
improvement in output quality after just a few iterations. An example is shown in Figure 
8. The input image is shown in part (a). The output of a nominally-optimal Wiener Filter 
(the filter that would be applied in a non-adaptive implementation) is shown in part (b). 
The remaining figures show successive outcomes of the filter adjusted by the adaptive 
algorithm, with the process stopping after four iterations (with final output shown in part 
(f)). The development of the adaptive system approach is described more fully and with 
more examples in the paper [8] and the thesis [9]. The thesis also describes a GUI 
implementation of the adaptive system. 
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Figure 7 Adaptive system model. 

While this approach generally succeeded in finding a good Wiener Filter, we do not view 
optimizing over this relatively simple class of filters as the most important aspect of the 
work. Rather, it is that we have a system that in the test case of Wiener filtering performs 
qualitative optimization, and that it does so with the only user intervention being the 
quality assessment - the filter parameter adjustment is done automatically, so that the user 
does not have to be an expert in the filter operation. We expect that with approaches 
similar to those developed under this task, systems can be developed for qualitative 
optimization of more complicated image processors. 
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Figure 8 Adaptive algorithm applied to restoration of text image. 

IV. CONCLUSION 

In this report, we have described the work done under Contract F30602-98-C-0263 for 
the period September 1998 - June 2000. As stated in Section II (from the Contractor 
Statement of Work), the scope of this effort was to investigate new approaches for 
information fusion and to demonstrate their usefulness in image data processing for 
decision-making systems. We have developed a framework based on Product Space 
Conditional Event Algebra (PS-CEA) representations for conditional events and applied 
it to iterated image estimation. We have investigated the use of an alternative framework 
based on probability propagation in Bayesian networks for organizing the computations 
in model updating for target detection and recognition. Random Set (RS) representations 
for rules and other linguistic information have been used to develop an approach to 
adaptive, qualitative optimization of image processor input parameters. The results that 
we have obtained are preliminary, and further work needs to be done under each of the 
tasks to produce practical working systems. However, even these preliminary results 
show the utility of incorporating available conditional or linguistic information in the data 
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processing. We believe that the results do demonstrate that it is worthwhile to continue 
to investigate approaches such as PS-CEA, RS, and Bayesian network techniques that 
allow diverse types of information to be included systematically and consistently in 
complex problems of image estimation. 
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